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Abstract—Traditional FRC teams commonly use
AD* and forward-backward traversal methods for tra-
jectory planning. However, these approaches show lim-
itations when applied to the configuration space of
cascading robotic arms, where the L2 norm is not
meaningful. We present a new arm planning algorithm
to overcome these limitations. The algorithm is based
on a finite convex polygon set representation of objects,
where path planning is built upon a Lipschitz contin-
uous artificial potential field. In trajectory planning,
constraints on current and voltage are incorporated,
and time-optimal trajectories are derived using the
Augmented Lagrangian method and the L-BFGS op-
timization algorithm.

I. Introduction

PRACTICAL trajectory planning is crucial for max-
imizing a team’s performance in FRC (FIRST

Robotics Competition). Traditional AD* and forward-
backward traversal have been widely adopted for path
planning and trajectory optimization in drivetrain. How-
ever, these methods face significant challenges when ap-
plied to more complex robotic systems, such as multi-joint
robotic arms, where the conventional L2 norm does not
apply effectively in configuration space.

We handle these limitations in our new arm planning
algorithm for the upcoming 2025 FRC season. In Section
II, we leverage finite convex polytope sets to represent
object, which enable us to esatblish a Lipschitz continuous
artificial potential fields and optimize the path based on it.
In Section III, we build our time optimal model based on
current and voltage constraints, ensuring the system’s ef-
ficiency and safety. Then Augmented Lagrangian method
and the L-BFGS algorithm was introduced to solve the
objective function.

This method enhance the precision and performance of
the robotic arm, overcoming the shortcomings of previous
trajectory planning techniques, and offering significant
advantages in dynamic and complex environments.

Z. Zhang, Y. Chen, R. Xu and F. Ruan are with Next Innovation
STEM Center (see https://nifornextinnovation.com/).

II. Path Planning

A. Improved A* Algorithm

As Image 1a shown, the original A* algorithm may
always find a path that very close to the obstacles. This
is often led by the heuristic function. However, if any
errors occured in estimate or control, the robot may collide
with the obstacles. To avoid this, we introduce artificial
potential field to the cost function.

(a) Original A* Algorithm

(b) Improved A* Algorithm

Fig. 1: Difference between original and improved A* algo-
rithm

Every grid in the map has a potential value which is
calculated by the distance to the obstacles in a dynamic
programming way. It can find us a heuristic path, but it
is still discrete. To make the path continuous, we need to
interpolate.

B. Polynomial Curve

The key idea of a polynomial curve is to make the
discrete path continuous, not only in position but also in
velocity and acceleration.
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Fig. 2: 3D Cubic Spline

pi ∈ P
pi = [xi, yi], ∀i ∈ [0, n]

qi,x(s) = ai,xs
3 + bi,xs

2 + ci,xs
1 + di,x

∀i ∈ [0, n− 1], s ∈ [0, 1)

(1)

s is the normalized representation of the arc length.
The minimum order of polynomial to make the path

continuous in position, velocity, and acceleration is 3. And
to ensure the continuous, we need

qi−1,x(1) = qi,x(0) = xi

q′i−1,x(1) = q′i,x(0)

q′′i−1,x(1) = q′′i,x(0)

, ∀i ∈ [1, n] (2)

If the object is stationary in the beginning and at the
end, the velocity should be q′0(0) = q′n(1) = 0. By solving
these equations we can uniquely determine a polynomial
to fit those points.


ai = xi+2 − 2xi+1 + xi

bi = −xi+2 + 2xi+1,k − xi

ci = xi+1 − xi

di = xi

, ∀i ∈ [1, n− 1] (3)

In natural form [12].


2 1
1 4 1

. . . . . . . . .
1 4 1

1 2




D0

D1

...
Dm−1

Dm

 =


3(x1 − x0)
3(x2 − x0)

...
3(xm − xm−2)
3(xm − xm−1


(4)


ai = 2(xi − xi+1) +Di +Di+1

bi = 3(xi+1 − xi)− 2Di −Di+1

ci = Di

di = xi

(5)

C. Continuous Potential Field
In section II.A, we proposed a method to calculate

the approximate and discrete potential field. However,
the potential field often cause the path a severe shaking.
Although you can set the potential field below a certain
threshold to zero, this still does not make the system
satisfactory.

Fig. 3: The path is not smooth and has sharp jitters.

Any object can be represented by a set of convex
polygons. The potential energy of a certain point is the
minimum distance from the point to the edge of the poly-
gon. In robot arm case, the certain point represent a kind
of configuration of the robot arm. The potential energy
is the minimum distance between the set of polygons that
make up the current configuration of the robot and the set
of polygons that make up the environmental obstacles.
If the point is inside the polygon, the distance is the

minimum distance to the edge of the polygon. If the
point is outside the polygon, the distance can be obtained
by solving the Low Dimensional Quadratic Programming
(LDQP) problem.

min
x
||x− p||2

s.t.Ax ≤ b
(6)

p is the given point, and x is the point inside the
polygon.
If the polygon is intersect or overlap with the other

polygon, the distance is defined as the minimum distance
from a vertex of a polygon contained by another polygon
to an edge of that polygon. If the two polygons are not
intersect, the distance can also be obtained by solving the
LDQP problem.

min
x,y
||x− y||2

s.t.Ax ≤ b

Cy ≤ d

(7)

By doing so, we can establish a lipshitz continuous
potential field and optimize the path by the gradient
descent method. A probable objective function is
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Fig. 4: The difference between the discrete and continuous
potential field.

n∑
i=0

|| exp(−dxi
)||2

+

n∑
i=0

||xi − x̄i||2Σ

+

n−1∑
i=0

||xi − xi+1||2Σ

+

n−1∑
i=1

||xi−1 − 2xi + xi+1||2Σ

(8)

||xi − x̄i||21 is the prior regularization term obtained by
A* search. The Mahalanobis distance is used because the
units of each dimension are different and the L2 norm
is meaningless in configuration space. Squaring ensures
differential flatness.

III. Trajectory Planning
Classical method to deal with the time parameterization

problem in FRC is called forward and backward pass. Its
essence is based on the trapezoidal curve or S-curve model,
adjusting the time scale so that the motion planning meets
the given constraints. However, there are difficulties in
dealing multi-DOF trajectory planning, especially when
it is not in Cartesian space [5], [7].

Fig. 5: Phase-plane trajectory [15]

Team 6328 proposed a Kairos solver in 2023. In their
23 season machine and code, they used an intake active
avoidance strategy to avoid anti-collision. This allowed

their solver to complete planning in a simpler way. So they
use linear interpolation as the initial position of waypoints,
and then adjusts the position of waypoints to make the
speed, acceleration, and torque meet the constraints [10].
Our approach is very different from Team 6328. Instead

of globally adjusting the time scale by assuming that the
time intervals between points are consistent, we express
the function of time with respect to arc length in dis-
cretized form.

Fig. 6: The curve is uniquely determined by the arc length
[2].

A. Time Optimal Path Parameterization
The total time of the trajectory is given by the integra-

tion of the whole path.

T =

∫ T

0

1dt =
∫ L

0

1
ds
dt

ds (9)

Velocity and acceleration constraints at elevator posi-
tion x and arm radian θ are

−vx,max ≤ vx ≤ vx,max

−ax,max ≤ ax ≤ ax,max

−vθ,max ≤ vθ ≤ vθ,max

−aθ,max ≤ aθ ≤ aθ,max

(10)

Given by chain rules, we have

dx
dt =

dx
ds ·

ds
dt

d2x
dt2 =

d2x
ds2 ·

ds
dt +

dx
ds ·

d2s
dt2

dθ
dt =

dθ
ds ·

ds
dt

d2θ
dt2 =

d2θ
ds2 ·

ds
dt +

dθ
ds ·

d2s
dt2

(11)

Denote

a(s) =
d2s
dt2 , b(s) =

(
ds
dt

)2

(12)

The problem is described by
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min
a(s),b(s)

∫ L

0

1√
b(s)

ds

s.t.

b′(s) = 2a(s)

x′(0)
√

b(0) = 0

x′(L)
√
b(L) = 0

θ′(0)
√

b(0) = 0

θ′(L)
√
b(L) = 0

−b(s) ≤ 0

[x′(s)]2b(s) ≤ v2x,max

[θ′(s)]2b(s) ≤ v2θ,max

x′′(s)b(s) + x′(s)a(s) ≤ ax,max

−x′′(s)b(s) + x′(s)a(s) ≤ ax,max

θ′′(s)b(s) + θ′(s)a(s) ≤ aθ,max

−θ′′(s)b(s) + θ′(s)a(s) ≤ aθ,max

(13)

1) Discrete Case: Considering the problem in discrete
case, we have

(a) Discrete accelerations

(b) Discrete velocities

Fig. 7: Discretization of the derivative of time with respect
to arc length [2].

We obtain the discretized object function

min
a,b

K∑
k=1

2(sk+1 − sk)√
bk+1 +

√
bk

s.t.

bk+1 − bk

sk+1 − sk
= 2ak ∀k ∈ [0,K − 1]

x′(s0)
√
b0 = 0

x′(sK)
√
bK = 0

θ′(s0)
√
b0 = 0

θ′(sK)
√
bL = 0

−bk ≤ 0 ∀k ∈ [0,K]

[x′(sk)]2bk ≤ v2x,max ∀k ∈ [0,K]

[θ′(sk)]2bk ≤ v2θ,max ∀k ∈ [0,K]

x′′(sk)bk + x′(sk)ak ≤ ax,max ∀k ∈ [0,K − 1]

−x′′(sk)bk + x′(sk)ak ≤ ax,max ∀k ∈ [0,K − 1]

θ′′(sk)bk + θ′(sk)ak ≤ aθ,max ∀k ∈ [0,K − 1]

−θ′′(sk)bk + θ′(sk)ak ≤ aθ,max ∀k ∈ [0,K − 1]
(14)

2) Second-Order Cone: To rewrite the problem to a
second-order conic programming form, we first try to
bound nonlinear term

√
bk with ck, such that

√
bk ≥

ck, k ∈ [0,K]. Going a step further, we introduce one
more slack variable dk, which satisfies 1

ck+1+ck
≤ dk, k ∈

[0,K − 1].

∣∣∣∣∣∣∣∣bk − 1
2ck

∣∣∣∣∣∣∣∣
2

≤ bk + 1⇔

bk + 1
bk − 1
2ck

 ∈ Q3

∣∣∣∣∣∣∣∣ck + ck+1 − dk

2

∣∣∣∣∣∣∣∣
2

≤ ck + ck+1 + dk

⇔

ck + ck+1 + dk

ck + ck+1 − dk

2

 ∈ Q3

(15)

min
a,b

K∑
k=1

2(sk+1 − sk)√
bk+1 +

√
bk
⇔

min
a,b,c,d

K∑
k=1

2dk(sk+1 − sk)

s.t.
∣∣∣∣∣∣∣∣ck + ck+1 − dk

2

∣∣∣∣∣∣∣∣
2

≤ ck + ck+1 + dk∣∣∣∣∣∣∣∣bk − 1
2ck

∣∣∣∣∣∣∣∣
2

≤ bk + 1

(16)

Rewriting the constraints of the optimization problem,
especially the nonlinear terms

√
bk, we get the final objec-

tive function [2].

min
a,b,c,d

K∑
k=1

2(sk+1 − sk)dk

Subject to
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ck + ck+1 + dk

ck + ck+1 − dk

2

 ∈ Q3 ∀k ∈ [0,K − 1]

bk + 1
bk − 1
2ck

 ∈ Q3 ∀k ∈ [0,K]

2(sk+1 − sk)ak + bk − bk+1 = 0 ∀k ∈ [0,K − 1]

[x′(s0)]2b0 = 0

[x′(sK)]2bK = 0

[θ′(s0)]2b0 = 0

[θ′(sK)]2bL = 0

−bk ≤ 0, ∀k ∈ [0,K]

[x′(sk)]2bk ≤ v2x,max ∀k ∈ [0,K]

[θ′(sk)]2bk ≤ v2θ,max ∀k ∈ [0,K]

x′′(sk)bk + x′(sk)ak ≤ ax,max ∀k ∈ [0,K − 1]

−x′′(sk)bk + x′(sk)ak ≤ ax,max ∀k ∈ [0,K − 1]

θ′′(sk)bk + θ′(sk)ak ≤ aθ,max ∀k ∈ [0,K − 1]

−θ′′(sk)bk + θ′(sk)ak ≤ aθ,max ∀k ∈ [0,K − 1]
(17)

The constraints are divided into second-order cone con-
straints, equality constraints and inequality constraints [4].

min
x

cTx

s.t. Aix+ bi ∈ Ki

Gx = h

Px ≤ q

(18)

3) Augmented Lagrangian Method: Therefore, we can
relax the constraints with the Augmented Lagrangian
method.

Lρ(x, µ, λ, η) =cTx+

ρ

2

m∑
i=1

||PKi(
µi

ρ
−Aix− bi)||2+

ρ

2
||Gx− h+

λ

ρ
||2+

ρ

2
||max[Px− q +

η

ρ
, 0]||2

(19)

PK is the projection of a vector on a symmetric cone

PK(v) = argmin
x∈K
||v − x||2 (20)

In second order cone case,

PK=Qn(v) =


0, v0 ≤ −||v1||2
v0+||v1||2
2||v1||2 (||v1||2, v1)T , |v0| < ||v1||2

v, v0 ≥ ||v1||2
(21)

And the gradient of the augmented Lagrangian function
is given by

∇Lρ(x, µ, λ, η) =c− ρ

m∑
i=1

AT
i PKi

(
µi

ρ
−Aix− bi)+

ρGT (Gx− h+
λ

ρ
)+

ρPT {max[Px− q +
η

ρ
, 0]}

(22)

We can use a L-BFGS method to solve this convex and
unconstrained function [1], [3], [16].

x← argmin
x
Lρ(x, µ, λ, η)

µi ← PKi
(µi − ρ(Aix+ bi))

λ← λ+ ρ(Gx− h)

η ← max[η + ρ(Px− q), 0]

ρ← min[(1 + γ)ρ, β]

(23)

γ is the growth rate of ρ and β is the upper bound of
ρ, which is typically 103.

(a) The corresponding path

(b) Velocity and acceleration under constraints

Fig. 8: Our previous work showing constraints on velocity
and acceleration [19].

B. Constraints on voltage and current
Although we can set constraints for speed and accel-

eration in segments instead of setting a global maximum



NEXT INNOVATION STEM CENTER 6

value, it is difficult to exhaust all possibilities and enumer-
ate all the required constraints. A conservative constraint
will waste control resources. Can we go one step further?

Under the guidance of the feedforward model, speed
and acceleration together constitute a feasible control
allocation. Hence, we redesign the speed and acceleration
constraints into voltage and current constraints. Doing
so enables the model to dynamically adjust the energy
distribution on speed and acceleration, maximize the use
of control resources on the field.

Elevator feedforward model, ie means the ratio from
motor radian to elevator position meter:

VE = Kg +KS · sign(ḋ) +
Kv

ie
· ḋ+ Ka

ie
· d̈ (24)

Arm feedforward model, ia means the ratio from motor
radian to arm radian:

VA = Kg · cos(θ) +KS · sign(θ̇) +
Kv

ia
· θ̇ + Ka

ia
· θ̈ (25)

The motor current at a given voltage and speed is:

I = −Kv

R
· ω +

1

R
· V (26)

Notice that we used ck to bound the lower side of
√
bk.

This is because

2(sk+1 − sk)√
bk+1 +

√
bk
≤ 2(sk+1 − sk)

ck+1 + ck
≤ 2(sk+1 − sk)dk (27)

In case, we introduce a second order cone to handle the
chain constraints. The equality stands only when

√
bk =

ck. How about directly let
√
bk = ck instead of

√
bk ≥ ck?

So that,

2(sk+1 − sk)√
bk+1 +

√
bk

=
2(sk+1 − sk)

ck+1 + ck
≤ 2(sk+1 − sk)dk (28)

With quadratical constraints:

xTJjx− rTj x = 0, ∀j ∈ J (29)

By Augmented Lagrangian method, a dual variable ν is
used to relax and bound the quadratic term. The problem
is modeled by the following.

Lρ(x, µ, ν, λ, η) =cTx+

ρ

2

m∑
i=1

||PKi(
µi

ρ
−Aix− bi)||2+

ρ

2

q∑
j=1

||xTJjx− rTj x+
νj
ρ
||2+

ρ

2
||Gx− h+

λ

ρ
||2+

ρ

2
||max[Px− q +

η

ρ
, 0]||2

(30)

∇Lρ(x, µ, ν, λ, η) =c− ρ

m∑
i=1

AT
i PKi

(
µi

ρ
−Aix− bi)+

ρ

q∑
j=1

(xTJj − rTj +
νj
ρ
)(2Jjx− rj)+

ρGT (Gx− h+
λ

ρ
)+

ρPT {max[Px− q +
η

ρ
, 0]}

(31)
JT + J = 2J in case J is symmetric.

x← argmin
x
Lρ(x, µ, ν, λ, η)

µi ← PKi(µi − ρ(Aix+ bi))

νj ← νj + ρ(xTJjx− rTj x)

λ← λ+ ρ(Gx− h)

η ← max[η + ρ(Px− q), 0]

ρ← min[(1 + γ)ρ, β]

(32)

Till now, we obtain all the math tools to solve our
problem.

Fig. 9: Desktop Application Screenshot
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